

Frente Parlamentar Mista de Segurança contra Incêndio

Reunião do Conselho Consultivo – 05.10.2017 Situação da certificação de sistemas de detecção e alarme

www.iscbrasil.com.br

Histórico

- Reunião de Maio/2016 no C 24 abriu a possibilidade de as associações, junto com o Corpo de Bombeiros do Estado de São Paulo (CBSP) desenvolverem um processo de certificação de produtos;
- O Grupo Setorial de Sistemas de Detecção e Alarme de Incêndios (GSDAI), já defendia a certificação e já havia iniciado a elaboração das normas técnicas dos principais produtos;
- Mantidas as premissas do CBSP: Sistema Inmetro/Conmetro, laboratórios acreditados, escopos aprovados pelo Inmetro, avaliação da conformidade de acordo com modelos usualmente utilizados;
- Previsão legal para a coordenação da certificação no caso do CBSP.: Decreto 62.416, de 10 de janeiro de 2017 – consulta pública realizada, aguarda publicação

Modelos de certificação

- 1a Avaliação única (ensaio, avaliação de projeto, aval. de processo etc.)
- 1b Ensaio de lote (parcela ou todo lote)
- 2 Avaliação inicial com ensaio em amostra retirada no fabricante seguida de avaliação de manutenção (coleta no mercado)
- 3 Avaliação inicial: ensaio em amostra retirada no fabricante seguida de avali. de manutenção (coleta no fabr e pode incluir avali. do proc. produtivo.
- 4 Avaliação inicial com ensaio em amostra retirada no fabricante seguida de avaliação de manutenção (coleta no fabricante e no comércio, combinados ou alternadamente) e pode incluir avaliação do processo produtivo
- 5 Avaliação inicial com ensaio em amostra retirada no fabricante incluindo auditoria do SGQ seguida de avaliação de manutenção (coleta no fabricante e no comércio, combinados ou alternadamente) e inclui avaliação do processo produtivo, ou auditoria do SGQ, ou ambos
- 6 Avaliação inicial consistindo de auditoria do SGQ ou inspeções, seguida de manutenção periódica.

Proposta do GSDAI - Abinee

- ✓ Certificação dos produtos como meio de Avaliação da Conformidade segundo modelo 4, evoluindo para modelo 5;
- ✓ Certificação baseada nas normas brasileiras e tendo como entidade certificadora o CBSP;
- ✓ Laboratórios deverão estar acreditados pelo Inmetro;
- ✓ Organismos de Certificação de Produtos (OCP) devem pertencer ao SBAC;
- ✓ Aceitação dos relatórios de ensaios realizados em laboratórios acreditados pelo ILAC ou pelo INMETRO;
- ✓ A entrada dos produtos na certificação será gradativa e em consenso com os Corpos de Bombeiros;
- ✓ Objetivo é ter um modelo de âmbito nacional apesar das regulamentações serem estaduais;
- ✓ Após efetiva implantação, ter o aval do Inmetro.

Proposta do GSDAI - Abinee

- ✓ Iniciar a certificação pelas centrais de alarme e as fontes para centrais;
- ✓ Ciclo de validade da certificação será de 4 anos;
- ✓ Inicia-se no modelo 4 e após o primeiro ciclo (4 anos) passa-se para o modelo 5. Com isso, reduz-se o prazo de entrada em vigor da certificação, não tendo que aguardar a obtenção da certificação de ISO 9001;
- ✓ São realizados todos os ensaios da norma brasileira no início da certificação e ensaios específicos ao longo do ciclo, revalidando os mesmos ao fim dos 4 anos. Em paralelo, há a avaliação do sistema da qualidade do fabricante, análise de produtos disponíveis no mercado e acompanhamento da produção esporadicamente.

Proposta do GSDAI - Abinee

		descrição	nº item	INICIAL	1 M	2 M	3 M	4 M	1 M	2 M	3 M	4 M
	i n N 7	Requisitos Gerais de Funcionamento	4 ao15	Х				Х				
0 1		Ensaio Funcional	16.2	Х	Х	Х	Х	χ	Х	Х	Х	Х
n		Frio (Operacional)	16.4	Х	Х			Х	Х			
t	B 2	Calor Úmido, Estado constante (Operacional)	16.5	Х	Х			Х	Х			
r	R ₄	Impacto (Operacional)	16.6	Х		Х		Χ		χ		
o a	a I - ç S - ã O	Vibração, Senoidal - (Operacional) - Ensaio opcional	16.7	Х		χ		Χ		Х		
1		Compatibilidade Eletromagnética (EMC)	16.8	Х			Х	Х			Х	
e ã		Variação de tensão de Alimentação (Operacional)	16.9	Х			Χ	Х			Х	
e o		Calor Úmido, Estado constante (Resistência)	16.10	Х				Х				Х
е		Vibração, Senoidal – Resistência	16.11	Х				Χ				Х
N		Requisitos Gerais de Funcionamento	4 ao 8	Х				χ				
a B		Ensaio Funcional Completo	9.2.2	Х				χ				Х
FIR		Ensaio Funcional Reduzido	9.2.3	Х	Х	Χ	Х	Х	Х	Х	Χ	
o i .		Ensaio do Carregador e Fonte de energia Reserva	9.3	Х			Х	Х			Х	
n m I	-	Frio (Operacional) 1	9.5	Х	Х			Х	Х			
†	4	Calor Úmido, Estado constante (Operacional) 1	9.6	Х	Х			Х	Х			
e t		Impacto (Operacional) 1	9.7	Х		Х		Х		Х		
d a 7		Vibração, Senoidal – (Operacional) – Ensaio opcional 1	9.8	Х		Х		Х		χ		
e ç 2 ã 4		Compatibilidade Eletromagnética (EMC) 1	9.9	Х			Х	Х			Х	
0 0		Calor Úmido, Estado constante (Durabilidade) 1	9.10	Х				Х				Х
-		Vibração, Senoidal – (Durabilidade) 1	9.11	Х				Х				Х

Desde que estejam no mesmo gabinete, os ensaios ambientais deverão ser executados em conjunto com a central.

Obrigado

Roberto Barbieri roberto@abinee.org.br

www.abinee.org.br